Материалы по теме: data mining

Кластеризация категорийных данных: масштабируемый алгоритм CLOPE

Разбиение на группы со схожими характеристиками категорийных и транзакционных массивов данных в больших БД является важнейшей задачей Data Mining. Традиционные алгоритмы кластеризации в большинстве случаев не эффективны при обработке сверхбольших баз данных. В материале рассказывается о масштабируемом эвристическом алгоритме CLOPE, который позволяе...

27 апреля 2020

Алгоритмы кластеризации на службе Data Mining

Данный материал — попытка систематизировать и дать целостный взгляд на последние достижения в области разработки эффективных подходов к кластеризации данных. Целью материала не являлось подробное описание всех алгоритмов кластеризации. Наоборот, обзорный характер статьи и затронутая проблематика помогут сориентироваться в огромном количестве алгори...

21 апреля 2020

Loginom vs Deductor - Часть 2 | Проектирование сценариев

Loginom существенно сокращает время на реализацию сложной логики за счет декомпозиции больших задач, создания библиотек готовых компонентов, возможности повторного использования ранее созданных моделей и проектирования сценариев без привязки к конкретным данным.

27 февраля 2019

От данных к знаниям или от знаний к данным?

Среди новых возможностей платформы Loginom можно выделить разработку сценариев с использованием технологий как «снизу вверх» - от данных к моделям, так и «сверху вниз» - от моделей к данным. Это делает процесс разработки сценариев гибче, а при необходимости позволяет создавать аналитические модели даже без загрузки данных.

6 марта 2018

Конференция «Loginom Day 2018»: продвинутая аналитика, легкая в приготовлении

Аналитическая платформа, над разработкой которой мы работали много лет, в начале года официально вышла в свет и продолжает активно развиваться.